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Three fluid-borne colloidal spheres circulating around a ringlike optical vortex trap have been predicted to
undergo periodic collective motion due to their hydrodynamic coupling. In fact, the quenched disorder in an
experimentally projected optical vortex drives a transition to a dynamical state characterized by power-law
divergence of phase-space trajectories and collective fluctuations characterized by noninteger exponents. The
observed relationship between scaling in the microscopic trajectories and macroscopic collective fluctuations is
consistent with predictions for the onset of weak chaos within the experimentally accessible time window.
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Three identical spheres slowly sedimenting through a vis-
cous fluid in two or three dimensions generically tumble cha-
otically �1�. When the same spheres are driven steadily
around a ring, by contrast, their motion is predicted to be
purely periodic �2�, with the reduction in dimensionality and
the imposition of periodic boundary conditions �3� effec-
tively eliminating the domain of chaotic dynamics. In this
Rapid Communication, we demonstrate experimentally that
quenched disorder can randomize this system’s trajectory
through phase space, replacing the periodic steady state with
a power-law distribution of Poincaré recurrences. The hydro-
dynamically coupled spheres’ collective motions also are
characterized by power-law-distributed flights. The observed
noninteger scaling in the microscopic and macroscopic de-
grees of freedom and the relationship between the extracted
scaling exponents are consistent with fractional or strange
kinetics �4� in a system exhibiting weak chaos.

Our system consists of colloidal polystyrene spheres
1.51 �m in diameter �Polysciences, Lot No. 526826� dis-
persed in a layer of water 40 �m thick between a glass mi-
croscope slide and a coverslip. Three of these spheres are
confined to a horizontal ring by a single-beam optical trap
known as an optical vortex �5�. An optical vortex is formed
by focusing a helical mode of light �6� with a high-
numerical-aperture lens. The helical mode’s wave fronts
form an �-fold helix, where � is an integer winding number
known as the topological charge. The associated �-fold axial
screw dislocation manifests itself in perfect destructive inter-
ference along the optical axis, so that the beam focuses onto
a ring of light whose radius is proportional to � �7�. Polariz-
able particles are drawn up intensity gradients to the bright
ring, where they are trapped. Each photon in a helical beam,
moreover, carries �� orbital angular momentum that can be
transferred to trapped objects �8�. This creates a constant
torque that drives the particles around the ring.

Our samples are mounted on the stage of a Nikon
TE-2000U inverted optical microscope, whose objective lens
�100� numerical aperture �NA� 1.4 oil immersion Plan-Apo�
is used both to project an optical vortex and also to image the
circulating spheres. We imprint helical phase profiles
onto the wave fronts of a TEM00 beam �Coherent Verdi,
�=532 nm� using a phase-only spatial light modulator

�Hamamatsu X8267-16 PPM� in the holographic optical
trapping configuration �9,10�.

Figure 1�a� shows an optical vortex with �=80 whose
image was obtained by placing a front-surface mirror in the
microscope’s focal plane and collecting the reflected light
with the objective lens. The bright central spot is a conven-
tional optical tweezer formed on the optical axis by the un-
diffracted portion of the laser beam. After adaptively correct-
ing for residual aberrations in the optical train �9,11�, the
optical vortex is a nearly uniform ring of light with radius
R�=12 �m. Figure 1�b� shows three colloidal spheres
trapped on the ring at an applied laser power of 2.5 W. Un-
der these conditions, the particles circulate once around the
ring in T=1.2 s. We track the spheres’ angular positions
�1�t�, �2�t�, and �3�t� by recording the video stream at 30
frames per second on a Pioneer 520H-S digital video re-
corder �DVR� with a NEC TI-324AII monochrome video
camera and extracting their instantaneous positions at 20 nm
resolution using digital video analysis �12�.

The optical vortex’s circumferential intensity profile, plot-
ted in Fig. 1�c�, varies by about 20% from the mean. These

FIG. 1. Optically driven colloidal ring. �a� Projected intensity
pattern for an optical vortex with �=80. �b� Video microscope im-
age of three colloidal silica spheres trapped on the optical vortex.
�c� Measured intensity variations around the optical vortex’s
circumference.
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intensity variations establish an effective potential energy
landscape that the circulating particles revisit with each tran-
sit �13�. No minima are deep enough to trap a particle. In-
stead, fluctuations in a single particle’s speed indicate root-
mean-squared potential energy variations smaller than 5% of
the mean.

A circulating sphere entrains flows in the surrounding
fluid that exert forces on neighboring spheres. Treating the
hydrodynamic coupling in the stokeslet approximation �14�
reveals that the symmetric configuration of equally spaced
particles is linearly unstable against a dynamical state com-
prised of a closely spaced pair of spheres and a singleton.
The pair outpaces the singleton to form a transient three-
particle cluster whose leading pair rushes ahead, leaving the
last sphere behind �2�. This periodic state ought to be ob-
served almost exclusively. Images such as Fig. 1�b�, how-
ever, show the particles in the nominally unstable state.

This qualitative discrepancy with theory presumably re-
sults from forces in the experimental system not considered
in the analytical model. Particles circulating around an opti-
cal vortex are affected by three factors: thermal forces, the
optical vortex’s fixed potential energy landscape, and the
spheres’ hydrodynamic interactions. Their relative impor-
tance can be inferred by comparing the measured �12� free-
particle self-diffusion coefficient D0=0.19±0.02 �m2/s with
that of a single sphere in the optical vortex �13�,
Dd=1.0±0.2 �m2/s, and with that of any one of the three
spheres in Fig. 1�b�, Ddc=2.0±0.3 �m2/s. In all three cases,
the particle’s mean-square positional fluctuations exhibit nor-
mal Einstein-Smoluchowsky scaling over the entire duration
of the experiments �13�.

We would not observe normal single-particle diffusion in
the three-particle ring if interactions led to collective effects
such as caging. Adding still more particles to the ring re-
duces their mean separation, increases crowding, and induces
a crossover to single-file diffusion similar to that observed in
related experiments on confined �15� and optically trapped
colloid �16�. Unlike previous reports, the driving and disor-
der in our system allow for both subdiffusive and superdif-
fusive single-file motion, which will be discussed elsewhere.
Anomalous three-particle dynamics in the present experi-
ment instead reflects the evolution of correlations among the
individual particles’ trajectories.

A driven sphere’s diffusion is strongly influenced by the
optical vortex’s potential energy landscape �13�, with a
single driven sphere’s effective diffusivity Dd exceeding the
free-particle value D0 by a factor of 5. A single particle dif-
fuses still more vigorously when it is hydrodynamically
coupled to others on the ring, with Ddc=2 Dd=10D0. This
further demonstrates that disorder-induced fluctuations are
enhanced by interparticle interactions. Because hydrody-
namic coupling alone would yield a periodic orbit �2�,
the aperiodic dynamics we observe must result from the
disorder.

The optical vortex’s potential energy landscape is fixed in
both position and time. It acts as a periodic perturbation to
the particles’ trajectories because they revisit the same inten-
sity variations with each cycle. Periodic perturbations are
known to induce transitions to chaos �17,18� in a wide vari-
ety of Hamiltonian and non-Hamiltonian systems. Observed

transitions between stable and unstable states in the optically
driven colloidal ring might therefore signal the onset of
chaos.

To characterize the system’s microscopic dynamics, we
projected the trajectories onto the two-dimensional subspace
of the six-dimensional phase space consisting of the indepen-
dent angular separations ��1�t�=�2�t�−�1�t� and ��2�t�
=�3�t�−�2�t�. The results in Figs. 2�a� and 2�b� show con-
tinuous trajectories, each obtained over 2.5 h, for �=50 and
�=80, respectively. The parametric traces were smoothed by
box car averaging over ten mean circulation periods T to
suppress details due to diffusion and disorder, and thus to
provide a clearer picture of the system’s intrinsic behavior.

Results for different topological charges differ qualita-
tively. The toroidal trace in Fig. 2�a� exhibits the predicted
periodic orbit �2� with a characteristic cycle time of
�=0.6 s. This exceeds the T=0.3 s required for an individual
particle to circulate once around the ring. The dynamical
state itself therefore rotates around the ring and is not phase
locked to the landscape.

Increasing the topological charge from �=50 to �=80 in-
creases R� from 8 �m to 12 �m, thereby separating the
spheres and spreading the light over a larger circumference.
The driving force on each particle decreases proportionately,
as does the hydrodynamic coupling among particles. The
landscape’s disorder also weakens, but only proportionally to
the decreased intensity. Increasing the topological charge
therefore increases disorder’s influence relative to hydrody-
namic forces. Under these conditions, the spheres’ trajecto-
ries make frequent and extended excursions away from the
nominally stable periodic cycle into the region of phase
space corresponding to the nominally unstable equilateral
configuration.

We characterized both systems’ microscopic dynamics by
measuring the distribution P��� of Poincaré recurrence times

FIG. 2. �Color online� �a� Projection from the phase space re-
constructed from particle tracks at �=50 and �b� �=80. �c� Recur-
rence time distribution for �=50. The curve is a guide to the eye
suggesting a cycle period of 0.6 s. �d� Power-law recurrence time
distribution for �=80.
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� required for a trajectory to revisit regions of phase space
0.5 rad on a side. Results for �=50 are plotted in Fig. 2�c�
and are consistent with a simple cycle with a period of 0.6 s.
Those for �=80, plotted in Fig. 2�d�, are not periodic. In-
stead, P��� decays as a power law, with an exponent
�=1.7±0.1. This suggests a power-law divergence of trajec-
tories in phase space, except over times � shorter than T. This
is a defining characteristic of weak chaos �19�. It is inconsis-
tent with fully developed chaos whose trajectories should
diverge exponentially.

The emergence of weak chaos driven by periodic pertur-
bations has been inferred from measurements on nonlinear
Alfvén waves in plasmas �20,21� and in low-dimensional
wall flow of viscous fluids �22�. Noise-induced chaos of any
kind is uncommon in strongly overdamped systems. Other
known examples �23� rely on thermal forces to fully explore
phase space. The present system, by contrast, relies on a
combination of viscous damping and quenched disorder to
access dynamically unfavorable states. Not any disordered
landscape can induce chaos, moreover. As suggested in �18�
and proved in �24�, a periodic perturbation can open up a
chaotic attractor near a stable limit cycle only if it possesses
a broad frequency spectrum. Although experimental evi-
dence alone is not sufficient to establish the existence of
weak chaos in our system, notions from this formalism are
useful for interpreting the emergence of random and phase-
space-filling dynamics.

Having direct access to the microscopic degrees of free-
dom presents an unusual opportunity to see how dynamical
randomness emerges in a driven dissipative system. To show
this, we combine the three trajectories into the complex
threefold bond-orientational order parameter,

	�t� =
1

3�
j=1

3

exp�3i� j�t�� . �1�

This function’s phase tracks the system’s rotation about the
optical axis and is useful for measuring the mean cycle pe-
riod T. Its magnitude �	�t�� reaches unity when the spheres
are evenly spaced and drops to roughly one-third when a pair
of spheres is diametrically opposite the third.

The trace of �	�t�� in Fig. 3�a� is computed for the trajec-
tory data in Fig. 2�b� and provides a macroscopic overview
of the system’s microscopic dynamics. As for other macro-
scopic descriptors, 	�t� can be used to reconstruct the under-
lying microscopic phase space. For example, Fig. 3�b� shows

a Poincaré section at delay 20T, which effectively fills the
accessible part of the phase space. The periodic state concen-
trates the trajectory around �1/3 ,1 /3�, while occasional ex-
cursions to the equilateral state fill out the pattern.

The order parameter’s magnitude also confirms that the
system switches intermittently between paired and equilat-
eral states. To analyze the intermittent dynamics we use
methods originally developed to interpret density fluctua-
tions in tokamak plasmas �25�.

Given measurements of 	�t� at N discrete times tk, the
running sum

S�tn� = �
k=1

n

�	�tk�� −
n

N
��	�tN�� − �	�t1��� �2�

emphasizes trends in �	�t��, as shown in Fig. 4. Monotonic
runs in S�t� resemble flights in a system with fractional dy-
namics �4�, an identification that is supported by the distri-
bution functions plotted in Fig. 5. Not only does �	�t�� dis-
play intermittency, but its two-state structure appears also to
be scale invariant. The probability distributions for jump
magnitudes and jump durations are both well described by
power laws. The exponents 
=−2.5±0.1 and �=−2.6±0.2
for the magnitude and duration distributions, respectively,
are consistent with each other, and both exceed 2. This is a
signature of anomalous kinetics in the system’s collective
behavior �4�. Deviations from power-law scaling in PS��S�
and Pt��t� occur only for small flights, �S�3, at short
times, �t�10 s, and thus a very small proportion of the
measurement’s dynamic range and duration. Consequently,

FIG. 3. �a� Evolution of the threefold bond-orientational order
parameter. �b� Delay coordinate plot of �	�t�� at lag 20T.

FIG. 4. Running sum S�t� of the threefold bond-orientational
order parameter, displaying a hierarchy of monotonic runs �S span-
ning a range of durations �t.

FIG. 5. �Color online� Scaling of the magnitude �a� and duration
�b� distributions for runs in S�t�.

ANOMALOUS COLLECTIVE DYNAMICS IN OPTICALLY… PHYSICAL REVIEW E 75, 020401�R� �2007�

RAPID COMMUNICATIONS

020401-3



the system’s Lyapunov exponents must be very small if not
precisely zero.

Equality of 
 and � arises naturally in any system under-
going ballistic flights �19�. For the three colloidal spheres in
the present model system, these flights take the form of ran-
dom transitions between the equilateral and periodic dynami-
cal states. Furthermore, log-periodic oscillations are evident
when S�t� is plotted on a logarithmic time scale. Such loga-
rithmic periodicity arises for processes characterized by dis-
crete scaling �19,26� and is evidence for hierarchical struc-
ture in the system’s collective dynamics. If we assume that
the scalings in P��� and S�t� are consequences of the same
dynamical process, the microscopic and macroscopic statis-

tics are related by P���d�= Pt��t�d�t �4�. The associated
scaling relation �=
−1 is a characteristic of weak chaos and
also is consistent with our data. Whether or not this indicates
the existence of weak chaos and fractional dynamics in our
system, this agreement points to a profound connection be-
tween microscopic degrees of freedom and nontrivial macro-
scopic fluctuations in an experimentally accessible driven
dissipative system.
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